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1. SUMMARY 
 
Multicore computing technologies are critical to high performance embedded systems. Such 

technologies are advancing rapidly in terms of the diversity of available multicore platforms, and 
the scale and heterogeneity of computing resources available on multicore-equipped devices. 
However, development of high performance signal processing software for multicore computing 
platforms is a complex process. Due to this complexity, designers face major limitations in 
effectively deploying high performance embedded solutions based on current design methodologies 
and tools. Key factors that complicate this process include challenges in exposing and exploiting 
application parallelism; heterogeneity and complex trade-offs among available multicore platforms; 
and the large scale of modern embedded software applications. To help designers experiment more 
effectively with alternative multicore software strategies, and to develop efficient and reliable 
embedded software implementations, this project has contributed systematic design methods for 
formal description of multiprocessor platforms, and optimized mapping of signal processing code 
blocks onto multiprocessor architectures. 

The project has involved the following inter-related thrusts. 
 

1. Hardware description of multiprocessor systems. We have developed a formal 
framework for efficiently capturing and analyzing the underlying hardware 
structures in multicore platforms at a high level of abstraction. 

2. Systematic mapping of code blocks onto hardware. Building on our novel 
hardware description approach, we have developed algorithms and tools for 
systematically mapping signal processing code blocks onto multicore platforms. 

3. Customization and demonstration based on video surveillance and pattern 
recognition computations. To validate, refine, and demonstrate our description 
and mapping approaches, we have experimented with key algorithms and 
application subsystems in the domains of video surveillance and pattern 
recognition. 

2. INTRODUCTION 
 
Modeling DSP applications through coarse-grain dataflow graphs is widespread in the 

digital signal processing (DSP) design community, and a variety of dataflow models have been 
developed for dataflow-based design. A growing set of DSP design tools support such dataflow 
semantics. Furthermore, Turing-complete DSP-oriented dataflow modeling approaches are 
available to provide for full expressibility within the dataflow framework. 

In this project, we have advanced dataflow-based design methodologies for design and 
implementation of high-performance, multicore signal processing systems. We have applied 
dataflow concepts and methods to develop new methods for hardware description of multicore 
systems, and systematic mapping of code blocks onto hardware. We have demonstrated these new 
methods through extensive experimentation with key algorithms and application subsystems in the 
domains of video surveillance and pattern recognition. 

In this project, we have built on our previous work on the dataflow interchange format (DIF) 
[Hsu 2005]. The DIF toolset provides a foundation for exploring techniques that bridge 
heterogeneous dataflow models and architectures. A critical need in transferring technology across 
these different dataflow-based tools and their targeted platforms is that of a standard, vendor-
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independent language and an associated package with intermediate representations and efficient 
implementations of dataflow analysis and optimization algorithms. DIF is designed for this purpose 
and is proposed to be a standard language for specifying and working with dataflow-based DSP 
applications across all relevant dataflow modeling approaches that are related to DSP system 
design. 

In order to provide the DSP design industry with a convenient front-end to use DIF and the 
DIF package, automating the exporting and importing processes between DIF and design tools is an 
essential feature. Although problems related to exporting and importing are design-tool-specific, 
many practical implementation issues are quite common among different design tools. DIF and the 
associated DIF package have been designed to help reuse effort that is related to these common 
issues so that developers and users of design tools can focus on the novel features and unique 
constraints associated with their design problems. 

The DIF framework therefore provides a useful foundation for developing novel high 
performance computing capabilities that address the performance and productivity challenges of 
high performance signal processing applications. 

3. METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1. Dataflow Interchange Format  
 

Development of high performance embedded signal processing software for multicore 
computing platforms is a complex process. Key factors that complicate this process include 
challenges in exposing and exploiting application parallelism; heterogeneity and complex trade-offs 
among available multicore platforms; and the large scale of modern embedded software 
applications [Bhattacharyya 2013]. To enable designers to experiment more effectively with 
alternative multicore software strategies, and to develop efficient and reliable embedded software 
implementations, development of new design tools is critical for capturing and accurately targeting 
the constraints of state-of-the-art multicore systems. 

In this work, we have built on the Dataflow Interchange Format (DIF) Project [Hsu 2005], 
which is a core research focus of the Maryland DSPCAD Research Group [DSPCAD 2013] at the 
University of Maryland. The DIF Project provides a valuable infrastructure for developing, 
experimenting with, and integrating computer-aided design techniques for embedded signal 
processing systems. In this project, we have developed capabilities in the DIF package to 
demonstrate the techniques developed in this research, and provide a basis for integrating the 
techniques into practical design flows for optimized implementation of multicore signal processing 
software. 

3.2. Dataflow Modeling for Signal Processing Systems 
In recent years, dataflow models have become increasingly popular for design and 

implementation of signal processing systems (e.g., see [Bhattacharyya 2013]). Through their 
connections to computation graphs [Karp 1966] and Kahn process networks [Kahn 1974, Lee 
1995], signal-processing-oriented dataflow models of computation (SDMs) build on a strong 
theoretical foundation. Additionally, through their natural correspondence to signal flow graphs, 
which are used widely by signal processing algorithm designers, SDMs provide an intuitive 
framework for high-level application modeling and programming. Dataflow methods and tools have 
been developed previously by the DoD. For example, the processing graph method (PGM) has been 
developed extensively at NRL [Stevens 1997], and has influenced industrial tools for high-
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performance embedded signal processing, such as the Autocoding Toolset from MCCI [Robbins 
2002]. 

In SDMs, as in other forms of dataflow, applications are represented by directed graphs in 
which vertices, called actors, correspond to computational tasks, and each edge corresponds to a 
logical buffer that stores data values as they pass from the output of one actor to the input of 
another. In SDMs, dataflow actors can represent computations of arbitrary complexity as long as the 
interfaces of the computations conform to dataflow semantics. Intuitively, dataflow semantics in this 
context means that actors produce and consume data from their input and output edges, 
respectively, and each dataflow actor executes as a sequence of discrete units of computation, called 
firings, where each firing depends on some well-defined amount of data from the input edges of the 
associated actor. The restrictions and mathematical characterizations associated with this general 
notion of well-defined amount of data are primary aspects that distinguish alternative SDMs from 
one another. 

Unlike dataflow architectures [Dennis 1975], which embed dataflow graphs directly in 
hardware, SDMs apply dataflow purely as a programming model. Because of the concurrency and 
other forms of application structure exposed by signal processing dataflow graph representations, 
SDM tools have significant potential for high-level optimization, and efficient retargetability across 
diverse target platforms. For these reasons, along with their portability and intuitive appeal, SDMs 
have been applied to many application areas and a variety of target platforms (e.g., see 
[Bhattacharyya 2013]. As system complexity and the diversity of components in embedded signal 
processing platforms increases, designers are expressing more and more types of behavior in 
dataflow languages, and even combining different dataflow models to describe individual 
applications. 

3.3. The DIF Language (TDL) 
 
The dataflow interchange format (DIF) is proposed as a standard approach for specifying 

and integrating arbitrary dataflow-based semantics for signal processing system design [Hsu 2005]. 
The DIF Package (TDP) [Hsu 2005, Shen 2012] is a software tool, developed in conjunction with 
DIF, for modeling and analyzing signal processing oriented dataflow graphs. The DIF Language 
(TDL) is an accompanying textual design language for high-level specification of signal-
processing-oriented dataflow graphs. The TDL syntax for dataflow graph specification is designed 
based on dataflow theory and is independent of any specific design tool. 

Because dataflow-oriented design tools in the signal processing domain are fundamentally 
based on actor-oriented design, TDL provides a syntax to specify tool-specific actor information, 
which ensures that TDP can extract all relevant information from a given design tool. 

TDL is designed as a standard approach for specifying signal processing dataflow graphs at 
a high level of abstraction that is suitable for both programming and interchange. TDL provides a 
unique set of semantic features for specifying graph topologies, hierarchical design structure, 
dataflow-related design properties, and actor-specific information. TDP accompanies TDL, and 
provides a variety of intermediate representations, analysis techniques, and graph transformations 
that are useful for working with dataflow graphs that have been captured by TDL. For example, 
TDP includes a transformation that converts SDF (synchronous dataflow) representations into 
equivalent homogeneous SDF (HSDF) representations based on the algorithm introduced in [Lee 
1987]. Such a transformation can in general expose additional concurrency that is not represented 
explicitly in the original SDF graph. 

Compared to other design tools for representation and transformation of dataflow graphs — 
such as SysteMoC [Haubelt 2007], PeaCE [Kwon 2004], and stream-based functions [Kienhuis 
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2001] — a distinguishing feature of TDP is its support for representing and manipulating different 
specialized forms of dataflow semantics. This arises from the emphasis in TDL on recognizing a 
wide variety of important forms of dataflow semantics along with relevant modeling details that are 
required to meaningfully analyze those semantics. Due to this feature of TDP, its capabilities are 
highly complementary to those of existing dataflow-based frameworks. In particular, TDL and TDP 
can be used to capture and analyze, respectively, representations from many of these frameworks. 

3.4. Synchronization Graphs 
 
In this project, we have also leveraged our work on the synchronization graph modeling 

methodology (e.g., see [Sriram 2009]. Synchronization graphs provide formal methods for 
integrated representation and analysis of dataflow graph application behavior together with 
schedules (software structures for coordinating the execution of computational tasks across shared 
processors) that carry out execution of dataflow behaviors on multiprocessor hardware. 

Intuitively, a synchronization graph can be viewed as a graph-theoretic representation of a 
self-timed multiprocessor schedule for a synchronous dataflow graph. Here, by synchronous 
dataflow, we mean a specialized variant of dataflow in which the number of tokens produced and 
consumed on each actor port is constant [Lee 1987], and by a self-timed multiprocessor schedule, 
we mean a multiprocessor schedule in which the assignment of actors to processors and the 
execution ordering of actors that are mapped to the same processor are fixed at compile time [Lee 
1989]. Self-timed scheduling differs from static scheduling in that in self-timed scheduling, the 
actual time at which an actor invocation executes is determined at run time through appropriate 
synchronization. Such a scheduling model provides a framework for exploiting statically known 
application structure (through the compile time assignment and ordering), while providing for 
robustness when execution times are not known precisely or exhibit some amount of run-time 
variation. 

Self-timed execution of synchronous dataflow specifications is widely used in parallel 
execution of signal processing applications (e.g., see [Bhattacharyya 2013]), and has provided a 
valuable starting point for our work in this project. Synchronization graphs provide a formal 
mathematical framework for analyzing, optimizing, and implementing this class of parallel signal 
processing systems. 

 

4. RESULTS AND DISCUSSION 

4.1. Objectives 
Our project has centered on the following three key objectives, which involve the 

development of high level tools for formal description of multiprocessor platforms, systematic 
mapping of signal processing code blocks onto multiprocessor architectures, and in-depth 
application case studies in the domains of video surveillance and pattern recognition based on these 
tools. 

1. Hardware Description of Multiprocessor Systems. 
2. Systematic Mapping of Code Blocks onto Hardware.  
3. Customization and Demonstration based on Video Surveillance and Pattern 

Recognition Computations.  
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4.2. Hardware Description of Multiprocessor Systems 

4.2.1. CLT Design Flow 
In this project, we have developed a novel design flow, based on core functional dataflow 

(CFDF) graphs [Plishker 2008a] for integrated simulation and implementation of signal, image, and 
video processing applications on state-of-the-art multicore platforms. Our design flow builds on our 
previously developed work on the lightweight dataflow (LWDF) [Shen 2010] and targeted dataflow 
interchange format (TDIF) tools [Shen 2012]. Because of its strong connections to CFDF, LWDF, 
and TDIF concepts, we refer to our new design flow as the CFDF-LWDF-TDIF design flow or CLT 
design flow. The CLT design flow provides a structured design process, based on formal dataflow-
based models of computation, for efficient, high-confidence mapping of signal, image, and video 
processing systems onto multicore platforms. Our development of the CLT design flow has 
involved progress on all of the directions outlined in Section 4.1 (e.g., see Section 4.3.1 and Section 
4.4.1 for more details). 

4.2.2. DEIPS Methodology 
In this project, we have developed a methodology, based on our recently developed dataflow 

schedule graph (DSG) model [Wu 2011], for design and implementation of embedded image 
processing systems. We refer to this as the DEIPS (DSG-based design and implementation of 
Embedded Image Processing Systems) methodology. Our developments on the DEIPS 
methodology are reported in [Wu 2013]. 

We have developed the DEIPS methodology in the context of a state-of-the-art 
multiprocessor system-on-chip (MPSoC) platform that is relevant in the embedded image 
processing domain — the Texas Instruments (TI) TMS320C6678L embedded multicore digital 
signal processor platform, using the TI TMS320C6678L Evaluation Module [TI 2012]. 

The underlying multicore processor of the targeted TMS320C6678L device contains eight 
cores that can run at 1 Gigahertz (GHz) each.  Each core has L1 cache and L2 cache.  The L1 cache 
is made up of separate parts for program and data, while the L2 cache provides unified space for 
program and data. The memory subsystem includes 512 Megabyte (MB) memory double data rate 3 
(DDR3), which we employ as local memory, and 4 MB SRAM (MSMCSRAM), which we employ 
as shared memory among processors. Programmers can allocate memory space in the L2SRAM, 
MSMCSRAM or DDR3 through heaps that handle them. This platform provides significant 
flexibility to programmers and high level design tools to manage thread definitions, memory 
partitioning for threads, and inter-processor communication. 

In the DEIPS methodology, we map each thread to a Sequential Dataflow Schedule Graph 
(SDSG) [Wu 2011]. The memory usage of each thread, which can be analyzed or simulated 
efficiently using the underlying SDSG model, is then used to determine the size of the 
corresponding block of partitioned memory. Additionally, we implement two pairs of special actors 
to provide more accurate DSG representations targeted to the multicore TI platform. These actors 
implement data synchronization and control synchronization, respectively, on the TI platform. 

Inter-thread interactions are modeled as communication and synchronization actors between 
pairs of communicating SDSGs, and the resulting system-level schedules are modeled as CDSGs. 
When more than one processor is employed in the schedule, the CDSG model includes more than 
one SDSG and provides the nexus of the different SDSGs to coordinate and synchronize their 
concurrent execution. 

The schedule control actors snd and rec are used to synchronize pairs of communicating 
SDSGs. Such implementation of interprocessor communication is complicated on the targeted TI 
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platform since it requires handshaking involving heaps in shared memory, and creation of correct 
heap-based communication mechanisms. To simplify interprocessor communication from the 
designer’s point of view, and to make such communication more reliable, we integrate the 
handshaking functionality into pre-defined, reusable, TI-targeted snd and rec actor components. 
Designers can then integrate such interprocessor communication components as needed in their 
DSG structures without having to bother with the low level implementation details associated with 
interprocessor communication on the targeted device. Each time a snd or rec is instantiated in a 
CDSG, the associated inter-processor communication is effectively instantiated and appropriately 
configured based on the surrounding CDSG context. Similarly, data synchronization is modeled in 
the CDSG through appropriate actors that implement the required communication functionality on 
the targeted TI device.  

For more details on the DEIPS methodology and its application to Texas Instruments 
multicore digital signal processors, we refer the reader to [Wu 2013]. 
 

4.3. Systematic Mapping of Code Blocks onto Hardware 

4.3.1. Mapping Methods in the CLT Design Flow 
In the system optimization step of the CLT design flow (See Section 4.2.1), we enter the 

implementation phase, which is where TDIF comes into play. There are two main kinds of 
optimization techniques supported in the TDIF framework. One is cross-platform implementation 
for actor-level optimization, and the other is scheduling and mapping for system or subsystem 
optimization. 

After we identify the bottleneck actors, cross-platform implementation of actors allows 
designers to efficiently experiment with alternative actor realizations on different kinds of 
platforms, such as graphic processing units (GPUs), multicore programmable digital signal 
processors (PDSPs), and field programmable gate arrays (FPGAs), to help derive a platform or mix 
of platforms that will be strategic in terms of the given design constraints (e.g., constraints 
involving cost, performance, and energy consumption). During this process, much of the code from 
the simulation phase can be reused. Only the functionality associated with selected actor modes 
(e.g., bottleneck modes of bottleneck actors) needs to be rewritten or selected from available 
platform-specific libraries. 

The TDIF environment currently supports C-like programming languages — e.g., languages 
that are targeted to Central Processing Unit (CPU), GPU and multicore PDSP platforms. The GPU-
based capabilities of TDIF are currently oriented towards NVIDIA GPUs, based on the Compute 
Unified Device Architecture (CUDA) programming language [NVIDIA 2007], which can be 
viewed as an extension of C. The multicore PDSP capabilities currently in TDIF are oriented 
towards Texas Instruments (TI) PDSP devices, and are interoperable with the multithreading 
libraries provided by TI [TI 2012]. 

TDIF also provides a library of First-In-First-Out (FIFO) implementations that are 
optimized for different platforms. These FIFOs all adhere to a common set of CFDF-based 
application programming interfaces (APIs) so that they can be integrated in a manner that is 
consistent with the CFDF graph model from the simulation phase. After simulation-mode FIFOs are 
mapped into platform-specific FIFOs, optimized actors can communicate in a manner that is 
efficient, and consistent with the designer’s simulation model.  

The scheduling strategy employed determines the execution order of the actors while the 
mapping process, which is typically coupled closely with scheduling, determines which resource 
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each actor is executed on. TDIF provides the generalized schedule tree (GST) [Ko 2007] 
representation to facilitate implementation of and experimentation with alternative scheduling and 
mapping schemes for system optimization. GSTs are ordered trees with leaf nodes and internal 
nodes. An internal node of a GST in TDIF represents iteration control (e.g., a loop count) for an 
iteration construct that is to be applied when executing the associated subtree. On the other hand, a 
GST leaf node includes two pieces of information that are used to carry out individual actor firings 
— one is an actor of the associated dataflow graph, and the other is mapping information associated 
with the actor. The GST representation provides designers with a common interface through with 
topological information and algorithms for ordered trees can be applied to access and manipulate 
schedule elements. 

Execution of a GST involves traversing the tree to iteratively enable (and then execute, if 
appropriate) actors that correspond to the schedule tree leaf nodes. Note that if actors are not 
enabled, the GST traversal simply skips their invocation. Subsequent schedule rounds (and thus 
subsequent traversals of the schedule tree) will generally revisit actors that were unable to execute 
in the current round. 

For schedule construction in the implementation phase, the CFDF graph decomposition 
approach of [Plishker 2009] is integrated in the TDIF framework. This approach allows designers to 
decompose a CFDF graph into a set of SDF subgraphs. Each SDF subgraph can be scheduled by 
existing static scheduling algorithms, such as an APGAN-based scheduler [Bhattacharyya 1997] 
(APGAN stands for “acyclic pairwise grouping of adjacent nodes” — for more details, we refer the 
reader to [Bhattacharyya 1997]). The GST schedule trees that result from scheduling these SDF 
subgraphs are then systematically combined into a single, “execution-rate-balanced” GST using 
profiling and instrumentation techniques. 

4.3.2. Hierarchical Mapping of Multidimensional Dataflow 
Specifications 

In this project, we have developed a structured design method based on multidimensional 
synchronous dataflow (MDSDF) graphs for hierarchical mapping of DSP systems onto parallel 
architectures. Our developments on this new design method are reported in [Wang 2012]. 

MDSDF is a generalization of synchronous dataflow to multiple dimensions and provides an 
effective model for a variety of multidimensional DSP systems that have statically structured 
dataflow characteristics [Murthy 2002]. Our methods apply dataflow transformations to exploit data 
parallelism hierarchically for multidimensional dataflow graphs. Our methods provide a systematic 
approach for exposing and exploiting parallelism from multidimensional dataflow specifications 
across different levels of the specification hierarchy. We demonstrate our proposed new modeling 
techniques and design methods by applying them to optimize implementations on the NVIDIA 
graphics programming unit (GPU) programming model [NVIDIA 2012]. 

Recently-introduced data parallel programming environments emphasize support for 
exploiting multi-level or hierarchical parallelism, where parallelism is exploited programmatically 
at multiple levels of granularity.  For example, CUDA [NVIDIA 2012] provides a two-level thread 
hierarchy, where a set of threads makes up a thread block, and multiple thread blocks form a grid. 
Such hierarchical support for representing parallelism is important for multidimensional signal 
processing applications, where parallelism exists in different forms at different levels of the design 
hierarchy (DH) (e.g., interframe, inter-block, and inter-pixel parallelism in video processing). 

In this project, we have built on the MDSDF model of computation, and develop a design 
method to represent and apply parallelism hierarchically for multidimensional dataflow graphs. 

Suppose that we have an N -level hierarchical parallel programming model (platform 
hierarchy) P, which we want to use to implement a given MDSDF graph G. For example, such a 
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parallel programming model could be used as a target for code generation or could be used for an 
implementation that is derived from hand based on a functional reference (“golden model”) that is 
developed in terms of the MDSDF specification. We develop an N-level hierarchical dataflow 
graph transformation approach to achieve such a mapping from MDSDF to P. We refer to N in this 
context as the platform depth. 

First, we introduce some definitions and notation related to hierarchical dataflow graphs. A 
supernode s in a dataflow graph G = (V, E) is an actor (i.e., 𝑠 ∈ 𝑉) that is associated with a “nested 
dataflow graph” H(s), where execution of s in G corresponds to execution of H(s). In general, not 
all actor ports in H(s) are connected in H(s) (i.e., not all of them connect to edges within H(s)). The 
“unconnected actor ports” are referred to as the interface ports of H(s), and these ports are in one-to-
one correspondence with the ports of actor s. 

If G is the “top” of the DH (i.e., G is not encapsulated by a supernode in another graph), 
then we say that the nesting level (or simply level) of G, denoted λ(G), is 1. Similarly, for each 
supernode s in G, λ(H(s)) = 2; for each supernode t in any of these H(s)’s, λ(H(t)) = 3, and so on. 

The DHs in our model are non-overlapping, which means that for all supernodes within a 
DH (i.e., across all levels), their corresponding nested dataflow graphs do not share any actors or 
edges. Furthermore, we assume that these DHs are finite, which means that the levels (λ values) are 
all bounded. 

We refer to the maximum λ value in a DH D as the depth δ of D. For each 𝑖 ∈ {1, 2,⋯ , 𝛿}, 
we denote by Li the set of all actors that are “at level i”. That is, L1 = V, and for i = 2, 3, . . . , δ, 

 
                                           Li = ∪{Vh(s)|λ(H(s)) = i}, (1) 
 

where Vh(s) denotes the set of actors in the nested dataflow graph H(s). 
DHs in our decomposition approach can be constructed by designers as they explore 

alternative methods to structure the hierarchies such that they map efficiently into the parallelism 
hierarchy supported by the targeted platform. The key constraint in construction of a DH D is that 
the depth of each candidate DH should equal the platform depth. 

We develop a systematic method, called multidimensional DH mapping, to specify and map 
these DHs into hierarchies of smaller graphs, which can be mapped to successively lower levels of 
the targeted platform hierarchy. Figure 1 illustrates this approach for an MDSDF graph. The 
designer can construct the DHs bottom-up or top-down.  At each ith level (i > 1) of the DH, one or 
more groups (clusters) of connected actors are combined into units that are viewed as individual 
supernodes from level (i−1). Groups of actors, including supernodes, which are contained within 
such clusters are then scheduled together by adapting techniques for SDF-based and MDSDF-based 
clustered graph analysis and scheduling [Bhattacharyya 1996, Murthy 2002].  

Use of these techniques to systematically derive production and consumption tuples 
associated with actors at different levels of the design hierarchy, as well as firing vectors, which 
determine the relative rates at which different actors in a cluster execute, is illustrated in Figure 1. 

 

4.4. Customization and Demonstration based on Video Surveillance 
and Pattern Recognition Computations 

4.4.1. Gaussian Filtering 
In this section, we present a discussion of customizations, demonstrations and associated 

experimental findings in connection with the CFDF-LWDF-TDIF (CLT) design flow, which is 
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discussed in Section 4.2.1. To demonstrate the CLT design flow, we experiment with an image 
processing application centered on Gaussian filtering. Two-dimensional Gaussian filtering is a 
common kernel in image processing that is used for preprocessing. Gaussian filtering can be used to 
denoise an image or to prepare for multiresolution processing. A Gaussian filter is a filter whose 
impulse response is a Gaussian curve, which in two dimensions resembles a bell. 

For filtering in digital systems, the continuous Gaussian filter is sampled in a window and 
stored as coefficients in a matrix. The filter is convolved with the input image by centering the 
matrix on each pixel, multiplying the value of each entry in the matrix with the appropriate pixel, 
and then summing the results to produce the value of the new pixel. This operation is repeated until 
the entire output image has been created. 

The size of the matrix and the width of the filter may be customized according to the 
application. A wide filter will remove noise more aggressively but will smoothen sharp features. A 
narrow filter will have less of an impact on the quality of the image, but will be correspondingly 
less effective against noise. 

  

Figure 1. An example of a DH for an MDSDF specification. 
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Figure 2. Dataflow graph of an image processing application for Gaussian filtering 

Figure 2 shows a simple application based on Gaussian filtering. It reads bitmap files in tile 
chunks, inverts the values of the pixels of each tile, runs Gaussian filtering on each inverted tile, and 
then writes the results to an output bitmap file. The main processing pipeline is single-rate in terms 
of tiles, and can be statically scheduled, but after initialization and end-of-file behavior is modeled, 
there is conditional dataflow behavior in the application graph, which is represented by square 
brackets in the figure. 

Such conditional behavior arises, first, because the Gaussian filter coefficients are 
programmable to allow for different standard deviations. The coefficients are set once per image —  
coefficient_filter_reader produces a coefficient matrix for only the first firing. To 
correspond to this behavior, the gaussian_filter actor consumes the coefficient matrix only 
once, and each subsequent firing processes tiles. Such conditional firing also applies to 
bmp_file_reader, which produces tiles until the end of the associated file is reached.  

As shown in Figure 2 our dataflow graph of the image processing application for Gaussian 
filtering is specified as a CFDF graph. The graph includes five actors:  

• bmp_file_reader,  
• coefficient_filter_reader,  
• invert,  
• gaussian_filter, and  
• bmp_file_writer.  

We first use the LWDF programming methodology, integrated with the C language, to 
construct the system for simulation.  

It should also be noted that the tiles indicated in Figure 2 do vary somewhat between edges. 
Gaussian filtering applied to tiles must consider a limited neighborhood around each tile (called a 
halo) for correct results. Therefore, tiles produced by bmp_file_reader overlap, while the halo 
is discarded after Gaussian filtering. As a result, non-overlapping tiles form the input to 
bmp_file_writer. 

 

4.4.1.1. Simulation 
In our design, the bmp_file_reader actor is specified using two CFDF modes, and one 

output FIFO. The two modes are the process mode and the inactive mode. It is the actor 
programmer’s responsibility to implement the functionality of each mode. In the process mode, 
the bmp_file_reader reads image pixels of a given tile and the corresponding header 
information from a given bitmap file, and produces them to its output FIFOs. Then the actor returns 
the process mode as the mode for its next firing. This continues for each firing until all of the 
data has been read from the given bitmap file. After that, the actor returns the inactive mode, 
which is a terminal mode. Arrival at a terminal mode indicates that the actor cannot be fired 
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anymore until its current mode is first reset externally (e.g., by the enclosing scheduler). 
The coefficient_filter_reader actor is also specified in terms of two modes and 

one output FIFO. The two modes are again labeled as the process mode and the inactive 
mode, and again, the inactive mode is a terminal mode. On each firing when it is not in the 
inactive mode, the coefficient_filter_reader actor reads filter coefficients from a 
given file, stores them into a filter coefficient vector (FCV) array, and produces the coefficients onto 
its output FIFO. The FCV V has the form 

V=(sizeX,sizeY,c0,c1,…,cn−1),  (4) 

where sizeX and sizeY denote the size of the FCV represented in two dimensional format; each 
ci represents a coefficient value; and n = sizeX × sizeY. After firing, the actor returns the 
process mode if there is data remaining in the input file; otherwise, the actor returns the 
inactive mode. 

The bmp_file_writer actor contains only a single mode and one input FIFO. The 
single mode is called the process mode. Thus, the actor behaves as an SDF actor. On each firing, 
the bmp_file_writer actor reads the processed image pixels of the given tile and the 
corresponding header information from its input FIFOs, and writes them to a bitmap file, which can 
later be used to display the processed results. The actor returns the process mode as the next 
mode for firing. 

The gaussian_filter actor contains one input FIFO, one output FIFO and two modes: 
the store coefficients (STC) mode and the process mode. On each firing in the STC mode, the 
gaussian_filter actor consumes filter coefficients from its coefficient input FIFO, caches 
them inside the actor for further reference, and then returns the process mode as the next mode 
for firing. In the process mode, image pixels of a single tile will be consumed from the tile input 
FIFO of the actor, and the cached filter coefficients will be applied to these pixels. The results will 
be produced onto the tile output FIFO. The actor then returns the process mode as the next mode 
for firing. To activate a new set of coefficients, the actor must first be reset, through external 
control, back to the STC mode. 

The invert actor also contains a single mode called the process mode, and contains one 
input FIFO and one output FIFO. Because it has only one mode, it can also be viewed as an SDF 
actor. On each firing, the invert actor reads the image pixels of the given tile from its input 
FIFOs, inverts the color of the image pixels, and writes the processed result to its output FIFO. The 
actor always returns the process mode as the next mode for firing. 

After designing the actors, as described above, we connect the actors with the appropriate 
FIFOs. For our simulation setup, we use 256x256 images decomposed into 128x128 tiles, and 
filtered with different sizes of matrices for Gaussian filter coefficients. The CFDF canonical 
scheduler [Plishker 2008b] is used to run the simulation on 3 GHz Intel Xeon processors. The 
profiling results are reported in Table 1. As can be observed from this table, increases in the matrix 
size lead to increases in the processing time for the Gaussian filter and the overall application. 
Furthermore, the Gaussian filter actor accounts for most of the processing time in the application in 
all cases. Thus, if we can optimize the Gaussian filter actor, the performance of the overall 
application will be enhanced. 
  

Approved for Public Release; Distribution Unlimited. 
11  



Table 1. Execution time of the Gaussian filter actor (GF) and the Gaussian filtering application 
(App) during simulation. 

Filter size 5X5 11X11 21X21 25X25 37X37 
GF. CPU (ms) 50 280 1080 1540 3310 
App. CPU (ms) 70 295 1100 1550 3340 

Percentage 71.4% 95% 98.2% 99.3% 99.1% 

4.4.1.2. Implementation 
From the experiments discussed in the previous section, we identified the bottleneck actor to 

be the Gaussian filtering actor. To improve the performance of this actor, we apply the cross-
platform implementation features of TDIF. In particular, we use TDIF to experiment with a new 
version of the implementation in which the Gaussian filtering actor is executed on a graphics 
processing unit (GPU). 

GPUs provide a class of high performance computing platforms that provide high peak 
throughput processing for certain kinds of regularly structured computations [Owens 2008]. 
Typically, a GPU architecture is structured as an array of hierarchically connected cores. Cores tend 
to be lightweight as the GPU will instantiate many of them to support massively parallel graphics 
computations. Some of the memories are small and scoped for access to small numbers of cores, but 
can be read or written in one or just a few cycles. Other memories are larger and accessible by more 
cores, but at the cost of longer read and write latencies. 

Using TDIF, we explore the use of GPUs to accelerate the gaussian_filter actor. We 
employ an NVIDIA GTX 285 GPU and employ the CUDA programming environment to specify 
the internal functionality of the gaussian_filter actor for GPU acceleration. This CUDA-
based actor implementation is integrated systematically into the overall application-level CFDF 
graph through the TDIF design environment. We apply actor-level vectorization to exploit data 
parallelism within the actor on the targeted GPU. 

Fundamentals of vectorized execution for dataflow actors have been developed by Ritz [Ritz 
1993] and explored further by Zivojnovic [Zivojnovic 1994], Lalgudi [Lalgudi 2000], and Ko [Ko 
2008]. In such vectorization, multiple firings of the same actor are grouped together for execution to 
reduce the rate of context switching, enhance locality, and improve processor pipeline utilization. 
On GPUs, groups of vectorized firings can be executed concurrently to achieve parallel processing 
across different invocations of the associated actor. Each instance of a “vectorized actor” may be 
mapped to an individual thread or process, allowing the replicated instances to be executed in 
parallel. 

An application developer may consider vectorization within and across actors while writing 
kernels for CUDA acceleration. In TDIF, the actor interface need not change as the vectorization 
degree changes, which makes it relatively easy for designers to start with the programming 
framework provided by CUDA and wrap the resulting vectorized kernel designs in individual 
modes of an actor for integration at the dataflow graph level. 

In the GPU-targeted version of our Gaussian filtering application, a CUDA kernel is 
developed to accelerate the core Gaussian filtering computation (the process mode), and each 
thread is assigned to a single pixel, which leads to a set of parallel independent tasks. The threads 
are assembled into blocks to maximize data reuse. Each thread uses the same matrix for application 
to the local neighborhood, and there is significant overlap in the neighborhoods of the nearby 
pixels. To this end, the threads are grouped by tiles in the image. Once the kernel is launched, 
threads in a block cooperate to load the matrix, the tile to be processed, and a surrounding 
neighborhood of points. The image load itself is vectorized to ensure efficient bursting from 
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memory. Because CUDA recognizes the contiguous accesses across threads, the subsequent image 
processing operations induce vectorized accesses to global memory. 

We use the same canonical scheduler in the GPU implementation that we used in the 
simulation phase. The performance of our Gaussian filtering application with and without GPU 
acceleration is compared to demonstrate the ability of our design flow to support cross-platform 
actor implementation exploration in a manner that is systematically coupled with the simulation-
level application model. We use the same experimental setup — in terms of input and output 
images and overall dataflow graph structure — as used in the simulation. To accelerate the 
Gaussian Filtering actor, we applied an NVIDIA GTX 285 running CUDA 3.1 and compared the 
associated implementation to the simulation system. The measurement results are reported in Table 
2. 

Table 2. Execution time of the Gaussian filter actor (GF) and the Gaussian filtering application 
(App) with and without GPU acceleration. 

Filter size 5X5 11X11 21X21 25X25 37X37 
GF. CPU (ms) 50 280 1080 1540 3310 
GF. GPU (ms) 4.228 4.874 10.257 12.759 21.72 
GF. Speedup 11.83 57.45 105.29 120.70 152.39 

App. CPU (ms) 70 295 1100 1550 3340 
App. GPU (ms) 70 80 140 115 130 
App. Speedup 1 3.69 7.86 13.48 25.69 

 

As shown in Table 2, our design flow provides a flexible and efficient transition from the 
simulation system to a GPU-accelerated implementation that has superior performance compared to 
the corresponding simulation design for these experiments. The actor-level speedup realized by this 
acceleration process is in the range of 10X to 100X. However, the application-level speedup levels, 
while still significant (up to 25X speedup), are consistently less than the corresponding actor-level 
speedup levels. This is due to factors such as context switch overhead and communication cost for 
memory movement, which are associated with overall schedule coordination in the application 
implementations. 

4.4.2. Integral Histogram Computation 
The integral histogram (IH) first maps pixels into a set of non-overlapping ranges (“bins”), 

and then performs a 2-D scan. Two scan orders, cross-weave and wavefront, are explored in 
[Bellens 2011]. The cross-weave scan processes the image in the first dimension (horizontal scan) 
followed by a scan in the second dimension (vertical scan). Instead of applying two passes, the 
wavefront scan propagates an anti-diagonal wavefront calculation as it operates through a single 
scan. 

In our experiments, we incorporate use of a tiled image processing approach, where the 
image is separated into blocks (tiles) of neighboring pixels. Tiled approaches can be useful for GPU 
implementation to enhance parallel execution across multiple threads [NVIDIA 2012]. In particular, 
we explore in this case study a tiled integral histogram (TIH) approach for efficient mapping into 
GPU implementations. 

The overall input image size for IH computation is denoted as (Iw × Ih) pixels, and the 
number of histogram bins is denoted as Nb. In TIH computation, an image is tiled as an (Nw × Nh) 
rectangular arrangement of tiles, where each tile has a (Tw × Th) rectangular arrangement of pixels. 
Here, Tw = Iw /Nw, and Th = Ih/Nh. For each (Tw × Th) tile, the IH is calculated independently. 
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After computation of all (Nw × Nh) tile-level IHs, the results can be processed to derive the image-
level IH result. 

For GPU-based implementation of IH computation, we design three types of two-
dimensional signal processing actors.  These actors are parameterized so that they can be statically 
or dynamically configured for the desired type of IH computation. Each of the three actors 
employed in our IH case study has a single input port and a single output port. These actors are 
described as follows. 

First, the Bin-Check actor determines bin membership for pixels.  The actor executes pixel 
checks of an image column for all bins with CONS = (1, Ih) and PROD = (1, Ih × Nb).  Here, and in 
the remainder of this section, we denote the two-dimensional (MDSDF) production and 
consumption rates of a given actor port as PROD and CONS, respectively. 

Second, the Intra-Tile-IH actor computes the IH, where the size of the input tile is specified 
by the actor parameters Tw (width) and Th (height), and the scan order is specified by the scan 
order parameter of the actor. The supported settings for the scan order parameter are as follows. 
 

• CWS: Compute the IH using a cross-weave scan with tiling. The actor ports satisfy 
CONS = PROD = (Tw , Th). 

• WFS: Compute the IH using a wavefront scan with tiling. The ports again satisfy 
CONS = PROD = (Tw , Th) 

• NT: Compute the IH using a cross-weave scan without tiling — that is, calculate the 
IH for the input image directly with CONS = PROD = (Tw , Th). 
The Inter-Tile-IH actor performs accumulation among tiles with a parameter, called the 

accumulation order parameter, to support different scan orders for performing the accumulation.  In 
particular, horizontal, vertical, and wavefront scans are used for accumulation order settings that are 
denoted HS, VS, and WFS, respectively. The actor ports of this actor (regardless of the 
accumulation order setting) satisfy CONS = PROD = (Iw, Ih). In addition, the accumulation order 
parameter can be set to the value IDLE to bypass any accumulation. While in the IDLE 
configuration, the actor performs no computation, and simply passes its input to its output (through 
a simple pointer transfer to avoid memory transfer overhead). 

Given the actors developed, one can implement the IH application with the MDSDF graph 
shown in Figure 3. The desired scan orders and tiling settings can be achieved by setting the actor 
parameter values appropriately. In the experiments, we show performance comparisons among 
three specific application modes, which are defined by the groups of parameter settings shown in 
Table 3. Here, SOP stands for “scan order parameter.” 

 
Figure 3. Multidimensional dataflow graph for image histogram computation. 

We customize the implementations for the different application modes by examining their 
MDSDF application graph representations separately, and deriving separate DHs to guide the 
application mapping processing. 

In our experiments, an NVIDIA GTX260 GPU and an Intel Xeon 3 GHz CPU are 
used.  We compare the three different application modes in Table 3. Table 4 depicts the grid 
and block sizes for GPU kernels. Performance is compared for four image sizes (Iw × Ih): 
32x32, 64x64, 256x256, and 512x512. Based on the number of GPU threads employed for 

Approved for Public Release; Distribution Unlimited. 
14  



each kernel, we choose a tile size of (32 × 16) in the APP-CWS mode for all image sizes. For 
the APP-WFS mode, tile sizes of (4 × 4), (8 × 8), (16 × 8), and (32 × 16) are chosen for 
successively larger image sizes. We evaluate the frame processing time, including the time 
required for memory transfer from the host to the device (GPU) and the processing time on 
the device. We do not include the time for memory transfer from the device back to the host 
because many applications that employ IH can be implemented on the GPU efficiently 
without need for data transfer back to the CPU. 

Table 3. Application modes. 

App 
mode 

Method 
V2 

SOP 
V3 

SOP 
V4 

SOP 

APP-CWS cross-weave TIH CWS HS VS 
APP-WFS wavefront TIH WFS WFS IDLE 
APP-NT no tiling NT IDLE IDLE 

Table 4. Grid sizes (upper) and block sizes (lower) derived from DH in our experiments. 

mode V2 kernel V3 kernel V4 kernel 
 

APP-CWS 
(Nw , NhNb) 

(Tw , 1) 
(1, Nb) 

(Tw , Th) 
(1, Nb) 

(Tw , Th) 

APP-WFS 
(1, Nb) 

(Nw , Nh) 
(1, Nb) 

(Tw , Th) 
N/A 

APP-NT 
(1, Nb) 
(Iw , 1) 

N/A N/A 

 
Figure 4 shows the frame rates (i.e., 1/τ, where τ represents the average time in seconds 

required to process a single frame) for various bin sizes ranging from 16 to 1024. From the 
experimental results, we see that the GPU implementation of the IH consistently outperforms the 
CPU implementation, and that the speedup gains are approximately 35X for image sizes 32x32 and 
64x64; 67X for image size 256x256; and 75X for image size 512x512. 

From the results, we observe that the best application mode for IH calculation depends on 
the image size, and thus parameterized MDSDF application modeling in conjunction with our 
multidimensional DH mapping approach is useful design methods to map IH computations 
systematically onto the targeted GPU platform. Such a systematic mapping approach leads to 
designs that can be mapped and adapted more efficiently, and that are more portable, and easier to 
maintain and extend. 
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Figure 4. Performance comparisons for different image sizes. 
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5. CONCLUSIONS 
In this project, we have developed new models and methods, rooted in high-level 

dataflow-based models of computation, for optimized design and implementation of multicore 
signal processing systems. We have developed new methods for hardware description of 
multicore systems, including the CFDF-LWDF-TDIF (CLT) design flow, and the DSG-based 
design and implementation of embedded image processing systems (DEIPS) methodology. These 
approaches emphasize, respectively, (1) integrated dataflow-based modeling, simulation and 
platform-specific optimization processes, and (2) systematic experimentation with and 
optimization of high level, dataflow graph schedules on multicore systems. Building on these 
methods, as well as on modeling techniques for multidimensional dataflow graphs, we have 
developed techniques for efficiently mapping code blocks for signal, image and video processing 
applications into optimized parallel implementations. We have demonstrated these new methods 
through extensive experimentation with key algorithms and application subsystems in the 
domains of video surveillance and pattern recognition. Useful directions for further investigation 
that have been motivated by this research include development of dynamic strategies for applying 
the models and methods underlying the CLT design flow and DEIPS methodology to adapt 
schedules and implementation configurations at run-time based on changes in data characteristics 
and application requirements. 
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B. APPENDIX B — Abstracts 
This section provides abstracts of conference, journal, and book chapter publications that were 
produced as outcomes of this project. 
 

[2014-1] H.-H. Wu, C.-C. Shen, H. Kee, N. Sane, W. Plishker, and S. S. 
Bhattacharyya. Mapping parameterized dataflow graphs onto FPGA platforms. In 
R. Chellappa and S. Theodoridis, editors, Academic Press Library in Signal 
Processing, volume 4, pages 643-673. Academic press, Elsevier Ltd., 2014 
 

As the speed and logic capacity of field programmable gate arrays (FPGAs) have been improving 
steadily, FPGAs have become increasingly attractive for a wide variety of signal processing 
systems.  FPGAs are increasingly employed in the form of platform FPGAs, which are integrated 
circuits that combine significant amounts of configurable logic fabric along with additional 
subsystems, such as application-specific accelerators, processor cores, memory blocks, and 
input/output interfaces, to facilitate FPGA-based, system-on-chip design. FPGA fabric is also 
integrated into application specific integrated circuits (ASICs) to allow implementations that 
provide a mix of programmable and custom hardware. 
 
Through support for dynamic reconfiguration, modern FPGAs allow customization of hardware 
structures both statically and at run-time, thus allowing streamlining of processing configurations 
in response to application requirements or data characteristics that are not known at design time. 
In addition to allowing for dynamic changes in system functionality, dynamic reconfiguration, 
when carried out effectively, can enhance performance, resource utilization, and energy 
efficiency.  
 
However, in addition to such potential for improved operation, incorporating dynamic 
reconfiguration into the digital system design space also brings increased design complexity. 
Model-based design methodologies have been evolving steadily over the years to help address 
issues of design complexity in embedded systems. In model-based design, applications are 
represented and analyzed in terms of formal models of computation, which promote analysis of 
functionality as well as hardware and software structure at a high level of abstraction. In the 
domain of signal processing, model-based techniques based on dataflow models of computation 
are particularly popular, and are employed in a growing variety of design tools. 
 
While dataflow techniques allow for high level reasoning about and manipulation of application 
dynamics, there are important challenges in mapping dataflow models into FPGA platforms in 
ways that systematically and effectively exploit the dynamic reconfiguration capabilities of the 
platforms. This paper provides a review of state-of-the-art model-based design techniques and 
FPGA implementation techniques for signal processing systems, and explores the challenges 
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involved in effectively mapping high level application models into efficient implementations on 
dynamically reconfigurable FPGA platforms. 
 
The exploration presented in this paper on mapping models into implementations builds on our 
earlier work in this area, which was presented in preliminary form in [Wu 2010]. The 
reconfiguration-aware mapping techniques presented in this paper go beyond the developments of 
[Wu 2010] in a number of ways. Specifically, this extended paper enhances the hardware 
architecture mapping methodology of [Wu 2010] and provides two alternative perspectives on 
scheduling. These two perspectives affect important trade-offs between performance and 
modularity. An important new aspect integrated into one of these scheduling perspectives 
involves integration of the recently-developed dataflow schedule graph model into processes for 
FPGA mapping of dynamically reconfigurable signal processing systems. 
 

[2013-1] L. Wang, C.-C. Shen, S. Wu, and S. S. Bhattacharyya. Parameterized 
scheduling of topological patterns in signal processing dataflow graphs. Journal of 
Signal Processing Systems, 71(3):275-286, June 2013. DOI:10.1007/s11265-012-
0719-x. 

In recent work, a graphical modeling construct called “topological patterns” has been shown to 
enable concise representation and direct analysis of repetitive dataflow graph sub-structures in the 
context of design methods and tools for digital signal processing systems.  In this paper, we 
present a formal design method for specifying topological patterns and deriving parameterized 
schedules from such patterns based on a novel schedule model called the scalable schedule tree. 
The approach represents an important class of parameterized schedule structures in a form that is 
intuitive for representation and efficient for code generation. Through application case studies 
involving image processing and wireless communications, we demonstrate our methods for 
topological pattern representation, scalable schedule tree derivation, and associated dataflow 
graph code generation. 
 

[2013-4] Z. Zhou, C. Shen, W. Plishker, and S. S. Bhattacharyya. Dataflow-based, 
cross-platform design flow for DSP applications. In A. Sangiovanni-Vincentelli, 
H. Zeng, M. Di Natale, and P. Marwedel, editors, Embedded Systems Development: 
From Functional Models to Implementations, pages 41-65. Springer, 2013. 
 

 
Dataflow methods have been widely explored over the years in the digital signal processing 
(DSP) domain to model, design, analyze, implement, and optimize DSP applications, such as 
applications in the areas of audio and video data stream processing, digital communications, and 
image processing. DSP-oriented dataflow methods provide formal techniques that facilitate 
software design, simulation, analysis, verification, instrumentation and optimization for exploring 
effective implementations on diverse target platforms. As the landscape of embedded platforms 
becomes increasingly diverse, a wide variety of different kinds of devices, including graphics 
processing units (GPUs), multicore programmable digital signal processors (PDSPs), and field 
programmable gate arrays (FPGAs), must be considered to thoroughly address the design space 
for a given application. In this chapter, we discuss design methodologies, based on the core 
functional dataflow (CFDF) model of computation, that help engineers to efficiently explore such 
diverse design spaces. In particular, we discuss a CFDF-based design flow and associated design 
methodology for efficient simulation and implementation of DSP applications. The design flow 
supports system formulation, simulation, validation, cross-platform software implementation, 
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instrumentation, and system integration capabilities to derive optimized signal processing 
implementations on a variety of platforms. We provide a comprehensive specification of the 
design flow using the lightweight dataflow (LWDF) and targeted dataflow interchange format 
(TDIF) tools, and demonstrate it with case studies on CPU/GPU and multicore PDSP designs that 
are geared towards fast simulation, quick transition from simulation to the implementation, high 
performance implementation, and power-efficient acceleration, respectively. 
 

[2012-1] L. Wang, C. Shen, G. Seetharaman, K. Palaniappan, and S. S. 
Bhattacharyya. Multidimensional dataflow graph modeling and mapping for 
efficient GPU implementation. In Proceedings of the IEEE Workshop on Signal 
Processing Systems, pages 300-305, Québec City, Canada, October 2012. 
 

Multidimensional synchronous dataflow (MDSDF) provides an effective model of computation 
for a variety of multidimensional DSP systems that have static dataflow structures.  In this paper, 
we develop new methods for optimized implementation of MDSDF graphs on embedded 
platforms that employ multiple levels of parallelism to enhance performance at different levels of 
granularity. Our approach allows designers to systematically represent and transform multi-level 
parallelism specifications from a common, MDSDF-based application level model. We 
demonstrate our methods with a case study of image histogram implementation on a graphics 
processing unit (GPU). Experimental results from this study show that our approach can be used 
to derive fast GPU implementations, and enhance trade-off analysis during design space 
exploration. 
 

[2011-1] S. S. Bhattacharyya, W. Plishker, N. Sane, C. Shen, and H. Wu. Modeling 
and optimization of dynamic signal processing in resource-aware sensor networks. 
In Proceedings of the Workshop on Resources Aware Sensor and Surveillance 
Networks in conjunction with IEEE International Conference on Advanced Video 
and Signal-Based Surveillance, pages 449-454, Klagenfurt, Austria, August 2011. 

 
Sensor node processing in resource-aware sensor networks is often critically dependent on 
dynamic signal processing functionality — i.e., signal processing functionality in which 
computational structure must be dynamically assessed and adapted based on time-varying 
environmental conditions, operating constraints or application requirements. In dynamic signal 
processing systems, it is important to provide flexibility for run-time adaptation of application 
behavior and execution characteristics, but in the domain of resource-aware sensor networks, 
such flexibility cannot come with significant costs in terms of power consumption overhead or 
reduced predictability. In this paper, we review a variety of complementary models of 
computation that are being developed as part of the dataflow interchange format (DIF) project to 
facilitate efficient and reliable implementation of dynamic signal processing systems. We 
demonstrate these methods in the context of resource-aware sensor networks. 
 

[2011-2] H. Wu, C. Shen, N. Sane, W. Plishker, and S. S. Bhattacharyya. A model-
based schedule representation for heterogeneous mapping of dataflow graphs. In 
Proceedings of the International Heterogeneity in Computing Workshop, pages 66-
77, Anchorage, Alaska, May 2011. 
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Dataflow-based application specifications are widely used in model-based design methodologies 
for signal processing systems. In this paper, we develop a new model called the dataflow schedule 
graph (DSG) for representing a broad class of dataflow graph schedules. The DSG provides a 
graphical representation of schedules based on dataflow semantics. In conventional approaches, 
applications are represented using dataflow graphs, whereas schedules for the graphs are 
represented using specialized notations, such as various kinds of sequences or looping constructs. 
In contrast, the DSG approach employs dataflow graphs for representing both application models 
and schedules that are derived from them. 
 
Our DSG approach provides a precise, formal framework for unambiguously representing, 
analyzing, manipulating, and interchanging schedules. We develop detailed formulations of the 
DSG representation, and present examples and experimental results that demonstrate the utility of 
DSGs in the context of heterogeneous signal processing system design. 
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7. LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
API   Application Programming Interface 
 
APGAN  Acyclic pairwise grouping of adjacent nodes 
 
BMP   Bitmap Image File 
 
CDSG  Concurrent DSG 
 
CFDF  Core Functional Dataflow 
 
CLT  CFDF-LWDF-TDIF 
 
CPU  Central Processing Unit  
 
CUDA  Compute Unified Device Architecture 
 
DDR  Double Data Rate 
 
DEIPS  DSG-based design and implementation of embedded image processing systems 
 
DH  Design Hierarchy 
 
DIF   Dataflow Interchange Format 
 
DSG  Dataflow Schedule Graph 
 
DSP   Digital Signal Processing 
 
FCV  Filter Coefficient Vector 
 
FIFO   First-In-First-Out 
 
FPGA  Field-Programmable Gate Array 
 
GF  Gaussian Filter 
 
GHz  Gigahertz 
 
GPU   Graphics Processing Unit 
 
GST  Generalized Schedule Tree 
 
HSDF  Homogeneous Synchronous Dataflow 
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HS  Horizontal Scan 
 
IH  Integral Histogram 
 
LWDF  Lightweight Dataflow 
 
MDSDF Multidimensional Synchronous Dataflow 
 
MPSoC Multiprocessor System-on-Chip 
 
PDSP  Programmable Digital Signal Processor 
 
PGM  Processing Graph Method 
 
SDF  Synchronous Dataflow 
 
SDM  Signal-processing-oriented Dataflow Model (of computation) 
 
SDSG  Sequential Dataflow Schedule Graph 
 
SRAM  Static Random Access Memory 
 
STC  Store Coefficients 
 
TDIF   Targeted DIF 
 
TDL  The DIF Language 
 
TDP  The DIF Package 
 
TI  Texas Instruments 
 
TIH  Tiled Integral Histogram 
 
VS  Vertical Scan 
 
WFS  Wavefont Scan 
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